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Figure 4-3. Model and System Characteristics

In Approach 1, the m.r.a. is determined by the 100( )1− % s.c.i. for
m s−  as

[ ]−  (1)

where [ ]′ = 1 2, ,..., k  represents lower bounds and

[ ]′ = 1 2, ,..., k  represents upper bounds of the s.c.i. The modeler can

be 100( )1− % confident that the true differences between the population

means of the model and system output variables are simultaneously
contained within (1).

In Approach 2,  the 100( )1 m− % s.c.i. are first constructed for m  as

[ ]m m, (2)
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Bonferroni inequality, the m.r.a. is determined by the following s.c.i. for
m s−  with a confidence level of at least ( )1− −m s  when the model

and system outputs are dependent and with a level of at least

( )1− − +m s m s  when the outputs are independent (Kleijnen, 1975):

[ ]m s m s− −, (4)

In Approach 3, the model and system output variables are observed in

pairs and the m.r.a. is determined by the 100( )1− % s.c.i. for d , the

population means of the differences of paired observations, as

[ ]d d, (5)
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The m.r.a. is constructed with the observations derived from the model and
system output variables by running the model with the same input data and
operational conditions that drive the real system. If the simulation is self-
driven, then the model input data come independently from the same
populations or stochastic process as the system input data. Because the
model and system input data are independent of each other, but come from
the same populations, the model and system output data are expected to be
independent and identically distributed. Hence, Approach 1 or 2 can be
used. The use of Approach 3 in this case would be less efficient. If the
simulation is trace-driven, the model input data are exactly the same as the
system input data. In this case, the model and system output data are
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expected to be dependent and identical.  Therefore, Approach 2 or 3 should
be used.

Sometimes, the model or simulation application sponsor or proponent may
specify an acceptable range of accuracy for a specific simulation.  This
specification can be made for the mean behavior of a stochastic simulation
as

L Um s≤ − ≤ . (6)

where [ ]L L ,L ,...,L1 2 k
′ =  and [ ]U U ,U ,...,U1 2 k

′ =  are the lower and

upper bounds of the acceptable differences between the population means of
the model and system output variables.  In this case, the m.r.a. should be
compared against Equation (6) to evaluate model validity.

The shorter the lengths of the m.r.a., the more meaningful is the
information they provide. The lengths can be decreased by increasing the
sample sizes or by decreasing the confidence level. Such increases in
sample sizes, however, may increase the cost of data collection. Thus, a
trade-off analysis may be necessary among the sample sizes, confidence
levels, half-length estimates of the m.r.a., data collection method, and cost
of data collection. For details of performing the trade-off analysis, see Balci
and Sargent, 1984.

4.1.3.23 Structural Testing

Structural testing (also called white-box testing) consists of six testing techniques: branch,
condition, data flow, loop, path, and statement testing. Structural (white-box) testing
evaluates the model based on its internal structure (how it is built), whereas functional
(black-box) testing assesses the input-output transformation accuracy of the model.
(Refer to Section 4.1.3.12.)  Structural testing employs data flow and control flow
diagrams to assess the accuracy of internal model structure by examining model elements
such as statements, branches, conditions, loops, internal logic, internal data
representations, submodel interfaces, and model execution paths.

Branch testing runs the model or simulation under test data to execute as many branch
alternatives as possible, as many times as possible, and to substantiate their accurate
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operation. The more branches that test successfully, the more confidence is gained in the
model’s accurate execution with respect to its logical branches (Beizer, 1990).

Condition testing runs the model or simulation under test data to execute as many
logical conditions as possible, as many times as possible, and to substantiate their
accurate operation. The more logical conditions that test successfully, the more
confidence is gained in the model’s accurate execution with respect to its logical
conditions.

Data flow testing uses the control flowgraph to explore sequences of events related to
the status of data structures and to examine data-flow anomalies. For example, sufficient
paths can be forced to execute under test data to ensure that every data element and
structure is initialized before use or every declared data structure is used at least once in
an executed path (Beizer, 1990).

Loop testing runs the model or simulation under test data to execute as many loop
structures as possible, as many times as possible, and to substantiate their accurate
operation. The more loop structures that test successfully, the more confidence is gained
in the model’s accurate execution with respect to its loop structures (Pressman, 1996).

Path testing runs the model or simulation under test data to execute as many control
flow paths as possible, as many times as possible, and to substantiate their accurate
operation. The more control flow paths that test successfully, the more confidence is
gained in the model’s accurate execution with respect to its control flow paths, but 100
percent path coverage is impossible to achieve for a reasonably large M&S application
(Beizer, 1990).

Path testing is performed in three steps (Howden, 1976). In Step 1, the model control
structure is determined and represented in a control flow diagram. In Step 2, test data is
generated to cause selected model logical paths to be executed. Symbolic evaluation
(Section 4.1.2.8) can be used to identify and classify input data based on the symbolic
representation of the model. The test data is generated in such a way as to (a) cover all
statements in the path, (b) encounter all nodes in the path, (c) cover all branches from a
node in the path, (d) achieve all decision combinations at each branch point in the path,
and (e) traverse all paths (Prather and Myers, 1987). In Step 3, by using the generated
test data, the model is forced to proceed through each path in its execution structure,
thereby providing comprehensive testing.

In practice, only a subset of all possible model paths is selected for testing due to
budgetary constraints. Recent work has sought to increase the amount of coverage per
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test case or to improve the effectiveness of the testing by selecting the most critical areas
to test. (Savvy readers may note that this technique is similar to the larger concept of
VV&A tailoring that was addressed in Chapters 1 and 3.)  The path prefix strategy is an
adaptive strategy that uses previously tested paths as a guide in the selection of
subsequent test paths. Prather and Myers (1987) prove that the path prefix strategy
achieves total branch coverage.

The identification of essential paths is a strategy that reduces the path coverage required
by nearly 40 percent (Chusho, 1987) by eliminating nonessential paths. Paths overlapped
by other paths are nonessential. The model control flow graph is transformed into a
directed graph whose arcs (called primitive arcs) correspond to the essential paths of the
model. Nonessential arcs are called inheritor arcs because they inherit information from
the primitive arcs. The graph produced during the transformation is called an inheritor-
reduced graph. Chusho (1987) presents algorithms for efficiently identifying nonessential
paths, reducing the control graph into an inheritor-reduced graph, and applying the
concept of essential paths to the selection of effective test data.

Statement testing runs the model or simulation under test data to execute as many
statements as possible, as many times as possible, and to substantiate their accurate
operation. The more statements that test successfully, the more confidence is gained in
the model’s accurate execution with respect to its statements (Beizer, 1990).

4.1.3.24 Submodel/Module Testing

Submodel testing requires a top-down decomposition of the model into submodels. The
executable model is instrumented to collect data on all input and output variables of a
submodel. The system is instrumented (if possible) to collect similar data. Then, the
behavior of each submodel is compared with the corresponding subsystem’s behavior to
judge the submodel’s validity. If a subsystem can be modeled analytically, its exact
solution can be compared against the simulation solution to assess its validity
quantitatively.

As enumerated in Principle 6 in Chapter 2, validating each submodel individually does not
imply sufficient validity for the whole model.  Each submodel is found sufficiently valid
with some allowable error. The allowable errors can accumulate to make the whole model
invalid. Therefore, after each submodel is validated, the whole model itself must be tested.
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4.1.3.25 Symbolic Debugging

This technique employs a debugging tool that allows the modeler to manipulate model
execution while viewing the model at the source code level. By setting breakpoints, the
modeler can interact with the entire model one step at a time, at predetermined locations,
or under specified conditions. While using a symbolic debugger, the modeler may alter
model data values or replay a portion of the model, i.e., execute it again under the same
conditions. Typically, the modeler utilizes the information gathered with execution testing
techniques (see Section 4.1.3.9) to isolate a problem or its proximity. Then the debugger
is employed to determine how and why the error occurs.

Current state-of-the-art debuggers can view the runtime code as it appears in the source
listing, set watch variables to monitor data flow, examine complex data structures, and
even communicate with asynchronous input/output channels. The use of symbolic
debugging can reduce greatly the debugging effort while increasing its effectiveness.
Symbolic debugging allows the modeler to locate errors and check numerous
circumstances that lead to errors (Whitner and Balci, 1989).

4.1.3.26 Top-Down Testing

Top-down testing is used with top-down model development. In top-down development,
model construction starts with the submodels at the highest level and culminates with the
routines at the base level, i.e., the ones that cannot be decomposed further. As each
submodel is completed, it is tested thoroughly. When submodels with the same parent
have been developed and tested, the submodels are integrated and their integration is
tested. This process is repeated until the whole model has been integrated and tested. The
integration of completed submodels need not wait for all submodels at the same level to
be completed. Submodel integration and testing can be, and often is, performed
incrementally (Sommerville, 1996).

Top-down testing begins with a test of the global model at its highest level. When testing
a given level, calls to submodels at lower levels are simulated using stubs. A stub is a
dummy submodel that has no function other than to let its caller complete the call. Fairley
(1976) lists the following advantages of top-down testing: (a) model integration testing is
minimized; (b) a working model is produced earlier in the development process; (c) higher
level interfaces are tested first; (d) a natural environment for testing lower levels is
created; and (e) errors are localized to new submodels and interfaces.
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Some of the disadvantages of top-down testing are (a) thorough submodel testing is
discouraged, because the entire model must be executed to perform testing; (b) testing can
be expensive, because the whole model must be executed for each test; (c) adequate input
data is difficult to obtain because of the complexity of the data paths and control
predicates; and (d) integration testing is hampered because of the size and complexity of
testing the whole model (Fairley, 1976).

4.1.3.27 Visualization/Animation

Visualization and animation of a simulation greatly assist in model V&V (Sargent, 1992).
Displaying graphical images of internal (e.g., how customers are served by a cashier) and
external (e.g., utilization of the cashier) dynamic behavior of a model during execution
exhibits errors. For example, in visual simulation of a traffic intersection, the modeler can
observe the arrival of vehicles in different lanes and their movements through the
intersection as the traffic light changes. Visualizing the model as it executes and comparing
it with the real traffic intersection can help identify discrepancies between the model and
the system.

Seeing the model in action is very useful for uncovering errors; however, it does not
guarantee model correctness (Paul, 1989). Therefore, visualization should be used with
caution.

4.1.4 Formal V&V Techniques

Formal V&V techniques are based on formal mathematical proofs of correctness. If
attainable, a formal proof of correctness is the most effective means of model V&V.
Unfortunately, if attainable is the sticking point. Current formal proof of correctness
techniques cannot be applied to even a reasonably complex M&S application; however,
formal techniques serve as the foundation for other V&V techniques. The most commonly
known eight techniques are briefly described below: (a) induction, (b) inference, (b) logical
deduction, (d) inductive assertions, (e) lambda-calculus, (f) predicate calculus, (g)
predicate transformation, and (h) proof of correctness (Khanna, 1991; Whitner and Balci,
1989).

Induction, inference, and logical deduction are simply acts of justifying conclusions
on the basis of premises given. An argument is valid if the steps used to progress from the
premises to the conclusion conform to established rules of inference. Inductive reasoning
is based on invariant properties of a set of observations; assertions are invariants because
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their value is defined to be true. Given that the initial model assertion is correct, it stands
to reason that if each path progressing from that assertion is correct and each path
subsequently progressing from the previous assertion is correct, then the model must be
correct if it terminates. Birta and Ozmizrak (1996) present a knowledge-based approach
for M&S validation that uses a validation knowledge base containing rules of inference.

Inductive assertions assess model correctness based on an approach that is very close to
formal proof of model correctness. It is conducted in three steps. In Step 1, input-to-
output relations for all model variables are identified. In Step 2, these relations are
converted into assertion statements and are placed along the model execution paths so
that an assertion statement lies at the beginning and end of each model execution path. In
Step 3, verification is achieved by proving for each path that, if the assertion at the
beginning of the path is true and all statements along the path are executed, then the
assertion at the end of the path is true. If all paths plus model termination can be proved,
by induction, the model is proved to be correct (Manna et al., 1973; Reynolds and Yeh,
1976).

Lambda Calculus (Barendregt, 1981) is a system that transforms the model into formal
expressions by rewriting strings. The model itself can be considered a large string. Lambda
calculus specifies rules for rewriting strings to transform the model into lambda calculus
expressions. Using lambda calculus, the modeler can express the model formally to apply
mathematical proof of correctness techniques to it.

Predicate calculus provides rules for manipulating predicates. A predicate is a
combination of simple relations, such as completed_jobs >steady_state_length. A
predicate will be either true or false. The model can be defined in terms of predicates and
manipulated using the rules of predicate calculus. Predicate calculus forms the basis of all
formal specification languages (Backhouse, 1986).

Predicate transformation (Dijkstra, 1975; Yeh, 1977) verifies model correctness by
formally defining the semantics of the model with a mapping that transforms model
output states to all possible model input states. This representation is the basis from
which model correctness is proved.

Formal proof of correctness expresses the model in a precise notation and then
mathematically proves that the executed model terminates and satisfies the requirements
with sufficient accuracy (Backhouse, 1986; Schach, 1996). Attaining proof of correctness
in a realistic sense is not possible under the current state of the art. The advantage of
realizing proof of correctness is so great, however, that, when the capability is realized, it
will revolutionize V&V.
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4.2 Guidelines for Using the V&V Techniques

t is very important to understand the twelve principles of VV&A presented in
Chapter 2 when applying the techniques just described to the VV&A process
presented in Chapter 3. The principles help researchers, practitioners, and managers

better understand M&S VV&A. They provide the underpinnings for the V&V techniques.
Understanding and applying the principles is crucially important for the success of an
M&S application.

Recall that, as stated in Principle 2 of Chapter 2, V&V is not a phase or step in the M&S
life cycle but a continuous activity throughout the entire M&S life cycle.  Table 4-2
shows the techniques that apply to the major stages of the generic VV&A process:

• Problem Definition • M&S Approach

• M&S Requirements • Conceptual Model

• M&S Design • M&S Implementation

• M&S Application • M&S Acceptability Assessment

The rows of Table 4-2 list the 76 V&V techniques described in this chapter, including a
placeholder for the 18 statistical techniques shown in Table 4-1. These statistical
techniques can be used to perform model validation quantitatively if data can be collected
on the input and output processes of the system.

I
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Table 4-2. Applicability of the V&V Techniques Throughout the M&S Life
Cycle

Formul.
Problem

M&S
Approach

M&S
Reqs.

Concep.
Model

M&S
Design

M&S
Implem.

M&S
Applic.

M&S
Accept.
Assess.

Acceptance Testing

Alpha Testing

Assertion Checking

Audit

Authorization Testing

Beta Testing

Bottom-Up Testing

Boundary Value Testing

Branch Testing

Calling Structure
Analysis
Cause-Effect Graphing

Comparison Testing

Concurrent Process
Analysis
Condition Testing

Control Flow Analysis

Data Dependency
Analysis
Data Flow Analysis

Data Flow Testing

Data Interface Testing

Debugging

Desk Checking

Equivalence Partitioning
Testing
Execution Monitoring

Execution Profiling

Execution Tracing

Extreme Input Testing

Face Validation
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Table 4-2. Applicability of the V&V Techniques Throughout the M&S Life
Cycle (cont.)

Formul.
Problem

M&S
Approach

M&S
Reqs.

Concep.
Model

M&S
Design

M&S
Implem.

M&S
Applic.

M&S
Accept.
Assess.

Fault/Failure Analysis

Fault/Failure Insertion Testing

Field Testing

Functional Testing

Graphical Comparisons

Induction

Inductive Assertions

Inference

Inspections

Invalid Input Testing

Lambda Calculus

Logical Deduction

Loop Testing

Model Interface Analysis

Model Interface Testing

Object-Flow Testing

Partition Testing

Path Testing

Performance Testing

Predicate Calculus

Predicate Transformation

Predictive Validation

Product Testing

Proof of Correctness

Real-Time Input Testing

Regression Testing

Reviews

Security Testing
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Table 4-2. Applicability of the V&V Techniques Throughout the M&S Life
Cycle (cont.)

Formul.
Problem

M&S
Approac

h

M&S
Reqs.

Concep.
Model

M&S
Design

M&S
Implem.

M&S
Applic.

M&S
Accept.
Assess.

Self-Driven Input Testing

Semantic Analysis

Sensitivity Analysis

Standards Testing

State Transition Analysis

Statement Testing

Statistical Techniques
(Table 4-1)
Stress Testing

Structural Analysis

Submodel/Module Testing

Symbolic Debugging

Symbolic Evaluation

Syntax Analysis

Top-Down Testing

Trace-Driven Input Testing

Traceability Assessment

Turing Test

User Interface Analysis

User Interface Testing

Visualization/Animation

Walkthroughs

Table 4-2 can be used to determine the V&V techniques that apply to each major stage of
the M&S life cycle. From those applicable, the technique(s) for a particular V&V activity
can be selected by considering the following: the model type as described in Figure 3-1;
the problem to be solved through the use of M&S; the specific objectives of the M&S
application; and the constraints of the application, including time, cost, and schedule.
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The life cycle application of V&V is extremely important for successful completion of
complex and large-scale M&S applications. How much to test or when to stop testing
depends on the M&S application objectives. The V&V effort should continue until the
modeler obtains sufficient confidence in the credibility and acceptability of the model or
simulation results. Sufficient confidence is determined by the objectives of the M&S
application.

Yet, it is recognized that applying V&V techniques throughout the life cycle is time-
consuming and can be costly if not properly tailored to the relevant requirements of the
problem. In practice, under pressure to complete an M&S application within a given
timeframe, VV&A is usually sacrificed first. The sacrifice of VV&A means less than the
delivery of a model without proven credibility and therefore without value to the decision
maker. Remember the bottom line from Principle 2: Correction of errors early in
development always costs less than correction of errors later. If you are worried about the
cost of VV&A, it is better to spend a little up front than a lot later. During a meeting in
the General’s office or standing before a senior-level review board is not the time to
realize that the sacrifice of VV&A was a mistake.
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